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Abstract 

The evolution of bed level is an important process that occurs in rivers, estuaries, and 

coastal regions. State-of-art morphological models use classical lower order Lax-Wendroff or 

modified Lax-Wendroff schemes for morphology which are not very stable for long time 

sediment transport simulation. This paper describes an architecture for ensembles of ANN 

with emphasis on its application to the prediction of time series morphological changes, 

where the goal is to minimize the prediction error. To evaluate the prediction qualities of the 

ensembles of ANN models, a comparative study has been carried out between this proposed 

model and common ANN model by evaluating several statistical parameters that describe 

the errors associated with the model in terms of statistical measures of goodness-of-fit 

between the estimated bed change and analytical approximation. The predicted results 

showed that for the simple case of 1D morphological problems considered in this study, 

ensembles of artificial neural networks could provide better results compared to common 

ANN models in most test cases. 

Keywords: Artificial Neural Network, Ensembles, Hydromorphological modeling, Sediment 

transport 

1. Introduction 

Numerical morphological models involve coupling between a hydrodynamic model, which 

provides a description of the flow field leading to a specification of local sediment transport 

rates, and an equation for bed level change which expresses the conservative balance of 

sediment volume and its continual redistribution with time. Recent examples of the 

development of such models include the work of Nicholson et al. (1997), Kobayashi and 

Johnson (2001), and Hudson et al. (2005). As reviewed in Nicholson et al. (1997), many 

state-of-art morphodynamic models use classical shock capturing schemes for bed level 

simulation. For example, Johnson and Zyserman (2002) applied a second order accurately 

modified Lax-Wendroff scheme (Abbott, 1979). The HR Wallingford model PISCES (Chesher 

et al. (1993)) uses a one-step Lax-Wendroff scheme. In Hudson et al. (2005), a variety of 

numerical schemes are discussed including versions of the Lax-Friedrichs scheme (Lax, 

2005), the classical Lax-Wendroff scheme, the MacCormack scheme (MacCormack (2003)) 

and Roe scheme (Osher and Solomon (1982)) based on shallow water equations for 

hydrodynamics and simple power law for sediment transport rate. A flux-limited version of the 

Roe scheme is found to be much more stable than Lax-Wendroff and Lax-Friedrichs type 

schemes. The disadvantage is that the Roe scheme involves calculations of eigenvectors for 

so-called Roe averaged Jacobian matrix of the entire hydrodynamics and morphology 

system. This is feasible for shallow water systems and simple power law sediment transport 

rates for 1D problems. The numeric becomes tedious and complex for a coupled system of 

more comprehensive hydrodynamic and sediment transport models. In the conventional 

hydromorphological models the bed level changes are governed by the equation for 
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conservation of sediment mass (Exner equation). Neglecting the suspended load, this 

equation can be written in a 1D case as follows: 

x

q

nt

z b

p

b











.

1

1
  [1] 

where zb is the bed elevation (defined positive upward relative to a fixed datum) at each 

horizontal position x and time t; np is the bed porosity, qb is the volumetric sediment transport 

rate per unit width. The bed load transport rate qb is a complicated function of various 

hydrodynamic quantities such as currents and water depth as well as quantities associated 

with sediment properties such as sediment density and grain size. Many empirical functions 

are available to calculate bed load transport. Most of the formulae available in the literature 

have been developed based on the analysis of laboratory and field data using statistical 

methods such as the regression method, and there are drastic differences between them. No 

uniformly valid formulation for qb exists at present. Yet, we are still unable to select the most 

accurate for a particular problem and the accuracy of computational sediment transport 

models remains a challenging question. The artificial neural networks are a form of artificial 

intelligence, which attempts to mimic the function of the human brain and nervous system at 

a sub symbolic level. ANNs learn from data examples presented to them in order to capture 

the subtle functional relationships within the data. The majority of hydromorphological 

processes are highly nonlinear in nature and, in many cases, modeling these variables with 

conventional models may be limited by a poor understanding of the complex interactions that 

are involved in the process. In such cases, ANN are often viewed as an appealing alternative, 

as they have the ability to extract a nonlinear relationship from data without requiring an in 

depth knowledge of the physics occurring within the system. However, there are some basic 

aspects of this approach, which are in need of better understanding. More specially: (1) No 

standard methods exist for transforming human knowledge or experience into the system. (2) 

There is a need of effective methods for tuning the transfer functions so as to minimize the 

output error measure or maximize a performance index. 

In this perspective, the aim of this paper is to develop a new architecture for ensembles of 

ANN models which can serve as a basic for constructing a set of ANN models with 

appropriate transfer functions to generate the stipulated input-output pairs. The objective is to 

predict the morphological changes in a straight alluvial channels under steady flow discharge 

and uniform bed material, where the bed level changes are calculated directly from the 

defined flow without calculation of the bed load. The prediction qualities of the designed 

ensemble of network and common ANN networks are studied by evaluating several 

statistical parameters that describe the errors associated with the model in terms of statistical 

measures of goodness-of-fit between the estimated bed change and analytical approximate. 

2. ANN and ensemble learning 

This section presents the basic concepts of ANN, to give us an idea of how the operation of 

ANN really is. In the second step we consider the ensemble learning process, for better 

understanding of how they are applied in the proposed method. 
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2.1. Basic aspects of ANN 

Artificial neural network is a 

broad term covering a large 

variety of network architec-

tures, the most common being 

a multilayer perceptron (MLP). 

The parameters to be found 

by applying the so-called error 

-back-propagation method are 

the weight vectors connecting 

the different nodes of the input, 

hidden, and output layers of 

the network. During training 

the values of the parameters 

(weights) are varied so that 

the ANN output becomes similar to the measured output on a known data set. 

An ANN model consists of a number of artificial neurons variously known as processing 

elements or nodes. For multilayer networks, neurons are arranged in layers: an input layer, 

an output layer and one or more intermediate or hidden layers. The net is formed by these 

layers of neurons, and each neuron in a specific layer is connected to neurons in other layers 

via weighted connections. Neurons are defined as mathematical expressions that filter the 

signal through the net. From the connected neurons in the previous layer, an individual 

neuron receives its weighted inputs which are usually summed along with a bias unit. The 

bias unit is used to scale the input to a useful range in order to improve the convergence 

properties of the network. 

The result of this combined summation is passed through a transfer function to produce the 

output of the neuron. This output is then passed through weighted connections to neurons in 

the next layer, where the process is repeated. A trained response is achieved by changing 

the connections weights in the network according to an error minimization criterion. A 

validation process can be used during the training in order to prevent overfitting. Once the 

network has been trained to simulate the best response to input data, the configuration of the 

network is fixed and a test process is conducted to evaluate the performance of the ANN as 

a predictive tool. According to Shahin et al. (2003), the structure and process for node j of an 

ANN model can be illustrated in Fig. 1. 

2.2. Ensemble learning 

The ensemble consists of learning paradigm where multiple component learners are trained 

(Zhou et al. (2002)) for a same task, and the predictions of the component learners are 

combined for dealing with future instances (Chen and Zhang (2005)). Since an ensemble is 

often more accurate than its component learners, such a paradigm become a hot topic in 

recent years and has already been successfully applied to optical character recognition, face 

recognition, scientific image analysis, medical diagnosis, etc. (Zhou et al. (2002)). 

 

 

Fig. 1 Typical structure and operation of an ANN model    

(Ij = activation level of node j; wji = connection 

weight between nodes j and i; xi = input from node i; 

yj = output of node j; and f(Ij) = transfer function) 
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2.3. Structure of the ensemble of ANN 

In this paper, the proposed 

ensemble structure is illustrated 

in Fig. 2. This structure is divided 

into 5 parts, where the first part 

represents the database to simu-

late in the ensemble of ANN, 

which in our case is time series 

data generated by analytical 

solution of Exner equation. In the 

second part training and vali-

dation is done sequentially in 

each ANN, where the number of 

ANN to be trained can be from 1 to n depending on what the user wants to test, but in our 

case we are dealing with a set of 3 ANN in the ensemble. In the third part we have to 

generate the results of each ANN trained in the previous part and in the fourth part we 

integrate the overall results of each ANN and finally the outcome or the final prediction of the 

ensemble ANN learning is obtained. 

The main idea of ensemble learning in ANN, is that each ANN has different ways to train and 

thus be simulated. This makes something like an expert system, i.e., give different viewpoints 

and then predict the time series, then take decisions based on the results of each ANN and 

reach some conclusion, then integrating the results and obtaining the best prediction of the 

time series being simulated, and then avoid future unexpected events. 

3. Integration methods 

There are diversity integration methods or aggregation of information. In this study, we use 

an integration in the form of the following: 
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 Where Int (.) is the integration function, Y = (Y1, Y2, …, Ym)T is the output vector of ensemble 

of ANN, m is the number of data set, Yij  is the output of ANN(j) using data set i which is used 

as input for the integration function, and  Tn ,,, 21  are parameters to be determined. 

Once having several ways to determine β achieving an optimal combination, we mention 

some of these methods below:   

 Integration by average: this method is used in the ensemble of ANN. This integration 

method is the simplest and most straightforward and consists in the sum of results 

generated by each ANN divided by the sum of number of ANN, and the disadvantage 

is that there are cases in which the prognosis is not good. 

n
i

1
   [3] 

 Integration by weighted average: this method is an extension of the integration by 

average, with the main difference that the weighted average assigns importance 

weights to each of the ANN models. These weights are assigned to a particular ANN 

 

Fig. 2 The structure of the ensemble of ANN 
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based on several factors; the most important is the knowledge product of experience. 

This integration method belongs to the well-known aggregation operators. 
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 Where ei is training error from ANN(i). Based on these errors weights are manually 

assigned to each βi. 

 

 Proposed integration method: in this section we propose linear regression as an 

integration method for the ensemble of ANN. The goal of this linear regression is to 

point out the relation between a dependent variable (target) and a great deal of 

independent variables (output of each ANN) to have minimum error. The general form 

of the error function is: 

min)(*   YY   [5] 

 Where 
T

mYYYY ),,,( **

2
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*  is target vector, 
T

m ),,,( 21   is error vector which 

must be minimized. β can be calculated in a matrix form to minimize the error as 

follows: 

*1)( YYYY TT    [6] 

4. Time series data generation 

We consider a straight channel with a 

length of 1000m and a finite amplitude 

perturbation of the bed level near the 

center of the domain as illustrated in Fig. 

3. In this case can represent a sand 

dune in a river flow. We assume that 

the bed elevation zb is very small in 

comparison to the water free surface 

level zs and the bed form movement is 

only due to bed load. Assuming a 

steady flow discharge throughout the 

channel with a rigid lid H0 = zs = const, 

we have 

bZHH  0   [7] 

and 

H

Q
u    [8] 

Assuming that transport rate q is a power function of current speed u (Grass (1981); Van Rijn 

et al. (1993)), we have 

mauq    [9] 

 

Fig. 3 Bathymetry and coordinate system for the 

test case 
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Where a, is a given function and m is a given positive constant both of which are specific to 

the particular sediment transport formula. Note that a, is typically a function of the mean flow 

velocity u, the total height of the water column H, and a number of constants that are based 

on sediment properties (e.g. sediment type and grain size) and data fitting procedures. The 

constant m is typically in the range of 1 ≤ m ≤ 3. The phase speed of bed form C(zb) can be 

now expressed as 

1
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The following quantities are specified according to similar setting in Hudson et al. (2005): a = 

0.001 s2/m, m = 3.0, and np = 0.4. Three different initial conditions zb(x, 0) are given as 

Gaussian, Sinusoidal, and Fractional, respectively: 
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Where W and A, are the width and height of each hump.  

 

Fig. 4  Initial conditions with different width and height used for data generation:                    

(a) Sinusoidal; (b) Gaussian; (c) Fractional 
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Fig. 4 shows every type of initial conditions with different width and height. Then Eq. (1) can 

be solved analytically for each initial condition by the method of characteristic with 0 ≤ t ≤ 

60000s and different Δt to generate the data for ANN model (see Bui et al. (2015)). The 

quantities mentioned previously are specified for this part as well. Grid spacing is chosen to 

be x = 2m. Tab. 1 presents the ranges of changeable parameters used for data generation. 

Tab. 1  Range of parameters used for data generation 

Bed shape Range 
Discharge 

Q(m3/s) 
Time step 
Δt(min) 

Width (W) 
Height 

(A) 

Gaussian 
Lower limit 6.0 30 0.0005 0.6 
Upper limit 12.0 50 0.0010 1.2 

Sinusoidal 
Lower limit 6.0 30 180 0.6 
Upper limit 12.0 50 240 1.2 

Fractional 
Lower limit 6.0 30 140 0.6 
Upper limit 12.0 50 200 1.2 

5. Design of each ANN model 

As mentioned before the Eq. (1) is solved analytically for all initial conditions and for all 

different parameters described in section 4 by the method of characteristic to generate the 

data for each ANN model. In contrast to numerical schemes where a very small time step 

has to be chosen to satisfy stability conditions, for the ANN models, we use large time steps 

(see Bui et al. (2015)). To generate the data set, u has to be evaluated using Eq. (8) at all 

alternate grid points i at time level n (denoted by uin). Then, zb has to be similarly evaluated 

using an analytical solution at the same grid points and time level (denoted by zbi
n). Once 

completed, the process is then repeated at time level (n + 1) and so on. Finally, we have a 

data set which is then divided randomly into three subsets, whereby the biggest amount of 

data (70%) is added randomly to the training subset. The remaining data set samples are 

used for validating (15%) and testing the networks (15%). The training subset is used to 

design the weights. The validation subset is used additionally to monitor the accuracy of 

training, while training is ongoing. After each epoch, the validation subset acts as a 

barometer for determining when the accuracy of the multilayer perceptron is at an acceptable 

level. After the network is considered optimally trained, the test subset is used to verify its 

performance. Bui et al. (2015) carried out an investigation to find the optimum ANN model for 

morphological bed level calculation. Since the performance of ANN model is significantly 

related to the number of hidden layer nodes, they employed a trial and error approach to 

choose the appropriate number of nodes in the hidden layer. According to Bui et al. (2015) 

the ANN configuration with ten hidden neurons shows acceptable accuracy. Further tests 

have been carried out for different transfer functions used in the hidden layer and output one. 

As they concluded, applying the log-sigmoid transfer function for hidden layer and the linear 

function for the output one, can generate the best performance of the ANN model. In this 

paper, we use the same architecture for each ANN but with different transfer functions in 

their only hidden layer. They also designed ANN model with eight different inputs 

combination to find the best input combination. As it can be seen from Eq. (10), the phase 

speed of bed form is always positive. Hence, in this study case the morphological change at 

the point i depends mostly on the bed level and water velocity at this point and at the 

upstream neighbor point (i - 1). It should be noted that in contrast with the study of Bui et al. 

(2015) where only one time step was used for data generation, in this study different time 
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steps are used, therefore the same input combination plus Δt was considered as input: 
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6. Simulation results 

In this section we make use of the morphodynamic test cases to examine the efficiency of 

the approaches we outlined in previous sections. First we analyze the capability of the 

designed ensemble of ANN models for prediction of bed level changes in the new coupling 

model. To achieve this aim, three different test sets are considered. The test parameters are 

selected to be in the range of the training data but not the same as the parameters used for 

training. The characteristic of each test set is listed below: 

Test case 1: Sinusoidal shape, Q = 9 m3/s, Δt = 42 min, W = 190, and A = 0.9 

Test case 2: Gaussian shape, Q = 7 m3/s, Δt = 47 min, W = 0.0009, and A = 0.7 

Test case 3: Fractional shape, Q = 11 m3/s, Δt = 33 min, W = 190, and A = 0.55 

In our ensembles we have a set of three ANN for learning, it is noteworthy that the type of 

transfer functions are assigned differently to each ANN and prediction error of each ANN is 

calculated by some statistical criteria resorting to R, MAE, and RMSE. In brief, the models 

predictions are optimal if R is found to be close to one, and MAE and RMSE are close to 

zero. 

6.1. Member networks 

After Applying designed ANN models for training data set, the values of the weights and 

biases have been specified after a successful learning and validating process. They 

represent the stored knowledge of each ANN for bed level change modeling, which are 

separated in one input weight matrix IW1,1, one hidden-layer weight matrix LW2,1, one bias 

vector b1 and one bias value b2 for each data ANN. Using the designed network, we received 

the following equations for the bed level change: 
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6.2. Ensemble ANN 

This section presents the methods of integration of average, weighted average, and pro-

posed linear regression which are used for simulation in our experiments of the ensemble of 

ANN in order to obtain a good forecast of simulated time series. In the case of integration by 

average, we added the result of each model and divided them by number of ANN models. 

For integrating the ensemble of ANNs using weighted average method, a weight was given 

depending on the results obtained from each ANN, these weights were assigned manually, 

where the lowest error between the ANN outputs had a weight of 0.50, the ANN that had an 

intermediate error 0.30 and the biggest error was assigned a weight of 0.20, thus obtaining 

100 percent of the weights assigned among the models of the ANN ensemble. And finally for 

integrating the ensemble of ANN using linear regression the Eq. (6) is used to calculate 

integration weights. 

6.3. Coupling flow and sediment computations 

Since the characteristic time scale of bed-evolution and 

bed load transport processes is normally much greater 

than that of fluid flow, it can be assumed that changes in 

the bed elevation during one computational time step do 

not significantly influence the flow field. This assumption 

leads to the computationally attractive possibility of 

coupling flow and sediment computations in an iterative 

manner. Hereby, the flow and sediment-transport 

modules communicate through a quasi-steady morpho-

dynamic time-stepping mechanism: during the flow 

computation, the bed level is assumed constant and 

during the computation of the bed level the flow and 

sediment transport are assumed invariant to the bed 

level changes. Based on this coupling concept, the main 

calculation procedure implemented in this study is 

shown in Fig. 5. 

First, the initial values (at time t = 0) are defined at every 

grid point i. The bed levels at one time step ahead are 

calculated using the ensemble of ANN (Eqs. (14), (15), 

and (16) and obtained weights and biases, then using integration method). The water 

velocities at this time step are updated using Eq. (8). This procedure is repeated until the last 

time step is reached (t = 60000s). Tab. 2 presents the statistical performances indices of 

different ANN models and ensemble of ANN based on a comparison between the predicted 

bed levels and analytical approximation at different time steps. 

 

Fig. 5 Flow chart of the coupling 

system 
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Tab. 2  Statistical performance of the designed ensemble of ANN models 

Test 
case 

Method Type R RMSE MAE 

1 ANN 
1 0.999938 0.004196 0.003382 
2 0.999929 0.004447 0.003523 
3 0.999826 0.006486 0.004511 

1 
Ensemble 

of ANN 

Integration by average 0.999949 0.003700 0.003132 
Integration of weighted 

average 
0.999954 

0.003540 0.002984 

Integration by linear 
regression 

0.999933 0.004663 0.003781 

2 ANN 
1 0.999946 0.002789 0.001772 
2 0.999873 0.003092 0.001373 
3 0.999984 0.001984 0.001225 

2 
Ensemble 

of ANN 

Integration by average 0.999978 0.001584 0.001046 
Integration of weighted 

average 
0.999960 0.001970 0.001281 

Integration by linear 
regression 

0.999992 0.001002 0.000732 

3 ANN 
1 0.997888 0.008145 0.003714 
2 0.995977 0.010668 0.004672 
3 0.999120 0.005052 0.002254 

3 
Ensemble 

of ANN 

Integration by average 0.998496 0.006513 0.002904 
Integration of weighted 

average 
0.997926 0.007722 0.003432 

Integration by linear 
regression 

0.998922 0.005481 0.002403 

 

The results indicate that the designed ensemble of ANNs perform well the morphological 

change in the channel almost for all test sets with high values of R as well as small values of 

RMSE and MAE. Since the integrated ANN model uses the predicted values from the past, it 

can be shown empirically that multi stage prediction is susceptible to the error accumulation 

problem, i.e. error committed in the past are propagated into future predictions. According to 

this table, the ensemble of ANNs integrated by weighted average provides the best 

performance for first test case in comparison to other models. The values of MAE and RMSE 

for this model are significantly smaller than the values of these parameters for other models, 

especially in comparison with single ANNs. For the second test case, the RMSE, and MAE 

values for the ensemble of ANN model integrated with the proposed linear regression are 

0.001002 and 0.000732, respectively which are significantly lower than other models. The 

mentioned statistical parameters are in the ranges of 0.001984 to 0.002789, and 0.001225 to 

0.001772, respectively for single ANN models. According to Tab. 2, ANN3 using Radial basis 

transfer function in its only hidden layer is performing better than the proposed ensemble of 

ANN for test case 3. However, it should be noted that for this case all proposed ensemble of 

ANNs have more accuracy than ANN1 and ANN2. Fig. 6 (a), (b), and (c) show a comparison 

between the best predicted results for each test case with the analytical solution at time t = 

6000s. As it can be seen from this figure, there is a good agreement between predicted 

results and analytical solution for all test cases. 
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Fig. 6  Comparison of the best predicted results for each test case with analytical solution;   

(a) Sinusoidal; (b) Gaussian; (c) Fractional 

7. Conclusions 

The ensemble of artificial neural network was applied for time series morphological bed level 

changes prediction as an alternative to common ANN models. Three different integrating 

methods were also applied for the integration of ensemble of ANN. An analytical 

approximation based on the equation of conservation of sediment has been applied to 

generate data used for training and testing the proposed ensemble of ANN model. The 

predicted results showed that for the simple case of 1D morphological problems considered 

in this study, the proposed ensemble of ANN could provide a good performance for long term 

time series prediction. The calculated results also showed that the ensemble of ANN could 

perform better than single ANNs for time series bed level changes prediction in most test 

cases. 
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